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Dynamic strain-induced nonlinearity in the modulus of filled rubbers shows a striking similarity to what is
known about the glass transition of solid materials and the jamming transition of granular materials. This
analogy stems from the reality that shear strain in dynamic mechanical measurements introduces fluctuations in
a filler network by forcing the system to explore different configurations. Such fluctuations can be described by
an “effective temperature” that has many attributes of a true temperature, and particularly is proportional to the
strain amplitude. Thus, filled rubbers with respect to strain will display many unusual phenomena that are
usually observed in glass-forming materials, but now demonstrated in filled rubbers, including asymmetric
kinetics, crossover effects, and glasslike kinetic transitions. The nonlinearity in the modulus of filled rubbers
simply reflects a dejamming transition of fillers in rubber matrices. The agglomeration of filler in an elasto-

meric matrix shares a common ground of physics with the jamming process and glass formation.
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I. INTRODUCTION

Filled rubbers, because of their promise as high-elasticity
and relatively low-cost materials which can potentially have
their physical characteristics matched to a given design
specification, have been widely used for coatings, seals,
dampers, cushions, transport belts, and automobile tires. The
presence of fillers, e.g., carbon black or silica particles, in
polymer matrices can significantly improve moldability, te-
nacity, durability, and abrasion properties. One of the funda-
mental issues is that filled rubbers have viscoelastic proper-
ties that depend strongly on strain amplitude. Payne [1]
discovered 40 years ago that in unfilled amorphous poly-
mers, cross linked or not, dynamic strains up to 40% ordi-
narily fell well within the range of linear viscoelasticity, but
polymers loaded with solid particles had viscoelastic proper-
ties strongly dependent on strain amplitude, even for strains
lower than 0.1%. The dynamic storage modulus G’ of filled
rubbers usually decreases with increasing strain amplitude,
and the drop can be enormous at high strains.

Despite the technological significance of filled rubber ma-
terials, this nonlinearity in viscoelastic properties of highly
filled rubbers is poorly understood. Various explanations for
the reduction of dynamic storage modulus with increasing
strain amplitude particular to filled polymers have been pro-
posed, including filler network breakdown [1-4], filler
deagglomeration [5,6], polymer-filler debonding from the
filler surface [7,8], and strain softening of the polymer shell
surrounding fillers [9]. Those past research activities often
regarded the strain-induced softening phenomenon as a spe-
cial area of physics specific to filled elastomers. However,
this phenomenon is generally observed in many systems that
differ widely in the strength and types of interparticle forces
as well as the shape, average size, and nature of the matrix
[1-11]. A complete understanding of the nonlinearity in filled
rubbers still remains elusive.

Whereas the phenomenological theory of linear viscoelas-
ticity of rubbers is essentially complete [12], the subject of
the nonlinear viscoelasticity of filled rubbers has not reached
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the same stage of development. For nonlinear viscoelasticity,
relations for interconversion of the functions of modulus and
compliance are generally unknown. At present, nonlinear
properties of rubbers such as stress-strain, creep compliance,
and dynamic moduli are independently characterized and
measured in rubber industries. The development of a model,
even if only phenomenological, is desperately needed. This
paper describes a study of the nonlinearity of carbon black
filled rubbers in which we have unambiguously observed
that the filled rubber displays glasslike kinetics and a glass
transition under oscillatory shearing. We find that the strain-
induced nonlinearity of filled rubbers shares a common phys-
ics with the glass transition of glass-forming materials and
the jamming transition of vibrated granular materials. This
result can be used to develop theoretical models.

II. MATERIALS AND EXPERIMENTS

Generic rubber compositions were prepared. The polymer
used was a commercial polybutadiene with a molecular
weight of about 150 kg/mol from Firestone Synthetic (com-
mercial name Diene 40NF). The polymer had a vinyl-1,2
content of 12%, cis-1,4 content of 45%, T, of about =90 °C,
and Mooney viscosity of about 40 at 100 °C. Carbon black
and other ingredients in the formulation were standard mate-
rials in the rubber industry and were commercially available.
A master batch was formulated with 100 parts per hundred
rubber (phr) polybutadiene, varied (50 to 70) phr N343 car-
bon black, 15 phr aromatic oil, 3 phr zinc oxide, 2 phr hy-
drocarbon resin tackifier, 0.95 phr antioxidant (Santoflex 13),
2 phr stearic acid, and 1 phr wax. Mixing was performed
with a 300-g Brabender mixer using a mixing speed of 60
rpm. At time zero, the polymer was charged to the mixer,
which was heated to an initial temperature of 110 °C. The
remaining ingredients were added at r=0.5 min, and the
batch was dropped at r=5 min when the temperature of the
stock approached approximately 150 °C. This master stock
was later mixed with curatives in the Brabender mixer at 60
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rpm to form a final stock. The curatives used were 2.1 phr
sulfur, 1.4 phr cyclohexyl-benzothiazole sulfenamide (accel-
erator), and 0.2 phr diphenylguanidine (accelerator). The
master stock was added to the mixer held at 75 °C at time
zero, the curatives were then charged at t=0.5 min, and the
final batch was dropped at =1.3 min when the temperature
of the stock reached approximately 90 °C. The final stock
was sheeted on a two-roll mill at 60 °C and cured in molds at
160 °C for 15 min. The 7, of the cured compound is about
—89 °C. In preparation of samples of various filler concen-
trations, the master batch compounds that contained 50-70
phr carbon black were further diluted by adding some gum
polybutadiene. Curatives and other ingredients were also cor-
respondingly adjusted based on the selected formulation. The
dilution process was carried out by using a two-roll mill at
60 °C. The prepared samples were finally cured in molds at
160 °C for 15 min.

Measurement of dynamic moduli (G’ and G”) and strain
effects was carried out using a Rheometrics ARES strain-
controlled rheometer equipped with dual 200 and 2000 g cm
force rebalance transducers and controlled using RSI OR-
CHESTRATOR V656 software. The following testing conditions
were employed: oscillatory shear and 30 °C. The test speci-
men was a cylinder with a diameter of about 9.5 mm and
with a length of about 5-15 mm, depending on the strain
requirement. The specimen was superglued between a pair of
parallel plates mounted in the instrument. Prior to testing, the
specimen was dynamically strained in a sweep from 0.01%
to 15%, and then dynamically sheared at the 15% strain am-
plitude for 3 h. The specimen was then allowed to recover
while oscillating at 0.01% strain amplitude for at least 48 h.
This procedure allowed the specimen to erase all of the pre-
vious load history, and was repeated at least twice to ensure
that the dynamic mechanical spectra of the specimen were
stable and reproducible. The strain during the oscillatory
shearing varied according to ()= sin(wt), where 9’ is the
strain amplitude. For simplicity, our use of vy in this paper
corresponds to the amplitude value (we do not include the
superscript 0). Reported strains represent values at the outer
sample edge. Variation of strain across the sample radius
does not significantly influence the findings herein compared
to homogeneous deformation.

Measurement of the electrical conductivity (I') of rubbers
and the effect of filler content was carried out on rubber
compounds using a bridge-balanced Ohms-meter at 23 °C
and 32% relative humidity. The test sample was a disk-
shaped specimen and had a diameter of about 25 mm and a
thickness of about 2 mm. The rubber sample was sandwiched
between a pair of parallel metal plates that were mounted in
the instrument. A normal load of about 2 kg force was used
on the top plate to ensure a good contact between the rubber
sample and the metal plates. Prior to the measurement, the
setup was allowed to equilibrate for 20 min. Electric resis-
tance measurements of rubbers were made directly between
the two parallel metal plates.

III. RESULTS AND DISCUSSION
A. Glasslike kinetics

Under oscillatory shearing conditions, the modulus of the
rubber decreases with time. However, immediately after the
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FIG. 1. Asymmetric approach to steady state of the filled rubber
(¢p=16.8%) at constant strain amplitude y;=7% on changing 7 (1)
from 0.1% to 7% and (2) from 14% to 7%. The test conditions: 0.5
Hz and 30 °C.

measurement at high amplitude, low-amplitude measure-
ments give small values of modulus that gradually recover
over a period of time and eventually regain their initial mag-
nitude. This thixotropic behavior has been known for some
time [ 1—4], but its detailed features have never been investi-
gated thoroughly. As shown in Fig. 1, upon an abrupt change
of the strain amplitude after reaching steady state, the me-
chanical properties of the rubber generally continue to
evolve toward a new steady state at new amplitudes. How-
ever, the approach of the storage modulus G’ to steady state
will differ depending upon the direction of the change in the
strain amplitude, when the rubber is allowed to equilibrate at
a final dynamic strain. If the change Ay=17,— 7, is positive,
say from y,=0.1% to y;=7%, the approach of the modulus
to steady state is autoretarded. The rate of the evolution can
usually be represented by an exponential (or stretched-
exponential) expression such as dG'(t)/dt~—-G'/ 7, where 7
is a characteristic relaxation time and G’ is the instantaneous
value of G'(t). However, if the change in Ay is negative, say
from yy=14% to y;=7%, the approach of the modulus to the
steady state is ill activated as the rate of the evolution can be
fitted by an expression dG’'(t)/dt~k, with k,~1/t. The
asymmetric behavior cannot be interpreted by simple kinetic
models such as those proposed in the literature [1-4], be-
cause a simple kinetic model such as A < B has the nature of
symmetry.

After the filled rubber specimen has been oscillatory
sheared for a long time, it will reach a steady state. Although
there is a defined average modulus, the results shown in Fig.
2 suggest that there are large fluctuations about the mean
value. Further examination has shown that the fluctuations
are real because they have their unique saw-shaped patterns
that differ from the instrument’s noise and they are about two
orders of magnitude higher than the instrument’s uncertainty.
The shape of the distribution for the fluctuation
amplitude can be obtained by plotting the logarithm of the
probability ~ of  occurrence  D(8G'/{G'))  versus
W=(6G'/{G"))*sgn(5G"), where 6G'=G'—(G'). A Gauss-
ian random process will have a triangular shape. As can be
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FIG. 2. Fluctuations in modulus of the filled rubber (¢
=16.8%) near the equilibrium state. The fluctuations have unique
saw-shaped patterns that differ from the instrument’s noise (e.g., the
strain). Inset shows the distribution D(8G'/{G")) vs the occurrence
of fluctuation W=(8G' /{G"))?sgn(8G’ ). The test conditions: 0.5 Hz
and 30 °C.

seen in Fig. 2 (see the inset), the modulus fluctuation data do
show the Gaussian character. However, the distribution in the
fluctuations is broader in the case when Ay>0 than that in
the case when Ay<<0. This behavior suggests that the het-
erogeneity in dynamical properties of the material, due to
filler-filler interactions, differs and depends upon the direc-
tion from which the material is approaching the steady state.

Throughout the literature, there are two other systems that
are known to show the same asymmetric behavior as their
thermodynamic properties approach equilibrium. One is the
structural relaxation process in glassy materials, most nota-
bly the relaxation and recovery of enthalpy and volume
[13,14]. In this case, the specific volume of a glass after
abruptly cooling to a temperature 7 is known to approach
equilibrium faster than a glass heated to the same tempera-
ture [13]. The reason is that the cooled sample arrives at the
temperature 7 with a larger free volume than the heated
glass. This implies a more open structure characterized by a
high mobility of molecules. Another situation with asymmet-
ric relaxation behavior is the density fluctuation in a vibrated
granular material [15-20]. In this case, the granular material
is in its jamming state. Once a void large enough to contain
a grain is created, it will be quickly filled by a new particle.
The rate of density settling from above or below equilibrium
[15] depends on the rate of void creation and the initial den-
sity of the material. Nevertheless, in both cases, the free
volume plays a crucial rule in determining the rate of ap-
proaching equilibrium. Current wisdom suggests that these
two cases share a common ground of physics [18-20]. Inter-
estingly, filled rubbers under oscillatory shearing also show
the same physical behavior. The modulus of the filled rubber
after abruptly increasing to a strain vy is shown to approach
the steady state faster than the rubber released from a higher
strain to the same strain amplitude (see Fig. 1).

More complicated features are observed when the rubber
is loaded with a dynamic strain amplitude, say y,=1%, for a
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FIG. 3. Unusual crossover effects of the filled rubber (¢
=16.8%) at y;=7% on changing y (1) from 14% to 7% and (2)
from 14% to 1% for 15 min followed by a change from 1% to 7%.
The test conditions: 0.5 Hz and 30 °C.

period of time ¢, insufficient to reach equilibrium, and then
changed to another amplitude, say vy;=7%, and allowed to
equilibrate. As shown in Fig. 3, the storage modulus initially
decreases with time and crosses over the actual equilibrium,
leading to a surprising minimum that depends upon the prior
loading history applied to the sample. After that, the sample
G' slowly approaches the equilibrium value. This phenom-
enon again was only observed in glass-forming materials in
the glassy state [13,14], and the behavior was usually re-
ferred to as a crossover effect. Our experiments show that
granular materials (e.g., fillers) may also display such a
crossover effect if they are impregnated in a soft elastomeric
matrix.

The existence of remarkable similarity between dynamic
strain-induced nonlinearity in the modulus of filled rubbers
and the physics of the glass transition of glass-forming ma-
terials and the jamming transition of vibrated granular mate-
rials has important implications with regard to our under-
standing of the strain-induced nonlinearity of filled rubbers.
The similarity stems from the fact that filler particles in the
rubber matrix agglomerate, given sufficiently high volume
concentration of filler, and tend to form filler networks. The
agglomeration and network formation of filler in elastomeric
matrix are typically jamming processes that are analogous to
glass formation. It is therefore understandable that the filled
rubbers will show glasslike kinetics.

The physical origin of the fluctuation in modulus shown
in Fig. 2 may be due to a competition between the breakup
and the reformation of filler aggregates and networks in the
rubber matrix. The net result of the competition determines
the amplitude of the modulus. Depending upon the direction
that the material is approaching the steady state, the sizes and
the distributions of filler aggregates must be widely different
in the rubber matrix. Consequently, the differences in sizes
and concentrations of filler aggregates affect the local hetero-
geneities in the breakup and reformation rates. The existence
of such heterogeneities can be seen in recent predictions of
mode-coupling theories on colloidal glasses [21].
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FIG. 4. Effects of strain history on the dynamic modulus of the
filled rubber (¢=16.8%) with scan rate d7y/dt (1) 0.0053 and (2)
0.72 min~!. Inset shows the rate dependence of the transition. The
subscript 0 denotes the zero-strain limiting values. The test condi-
tions: 0.5 Hz and 30 °C.

B. Glasslike transitions

The observations shown in Figs. 1-3 suggest that filled
rubbers with respect to strain amplitude behave like glass
materials with respect to temperature changes. Given that
filled rubbers under dynamic strains behave like glasses, is
there a strain-induced “glass transition” in filled rubbery ma-
terials? The answer is definitely positive. Figure 4 shows the
effects of strain history on the dynamic modulus of the rub-
ber. The storage modulus G’ initially is constant at low
strains, then falls stepwise with increasing strain amplitude,
while the loss modulus G” passes through a maximum. These
phenomena signify a transition, though it is generally re-
ferred to as the Payne effect [1-9]. However, we see evi-
dence indicating that the transition is kinetically controlled.
The higher the scan rate of strain sweep, the higher the strain
amplitude where the transition is located. In comparison to
thermal analysis, the rate of strain sweep in dynamic me-
chanical measurements for filled rubbers, d+y/dt, acts like the
rate in a temperature scan for glasses, d7/dt.

Why should there be a similarity between the shear strain
in filled rubbers and the temperature in glass-forming lig-
uids? The reason is that shear strain in dynamic mechanical
measurements often introduces fluctuations in fillers by forc-
ing the system to explore different configurations [11,22-24].
Such filler fluctuations can be described by an “effective
temperature” that has many attributes of a true temperature.
Here, we present a simple discussion which allows us to
predict the main relations. For a filled rubber system, the
shear rate y can be simply written as y~ yw, where w is the
test frequency and v is the strain amplitude. Since the filler
particles are trapped inside the polymer matrix, the average
tangential velocity of a particle v can be approximated lin-
early as v ~ yl, where [ is the dimension of the sheared speci-
men. This leads us to define a mean mobility of the particles
x via the relation fy=v, where f=6man is the friction force
experienced by the particle in a media of viscosity 7. Using
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statistical arguments for the fluctuations, the ensemble aver-
age of particle displacements (r(r)—r(0)) is related to y via
(r(r)-r(0))=vt=fxt, and the ensemble average of square
displacements is related to the apparent diffusivity of par-
ticles D via ([r(t)-r(0)]*)=2Dt. According to the Einstein
fluctuation-dissipation relation, it is the diffusivity and the
mobility that enable the calculation of an effective tempera-
ture T, We thus have ([r(t)—r(O)]2)=2[Tef_-,<r(t)—r(O))]/f.
Supposing that the fluctuations follow a Gaussian random
distribution, one finds that ([r(r)—r(0)]>)=37/8[(r(r)
—r(0))]%. With the aid of those results, we are ready to obtain
an expression for the effective temperature; that is, T,
=Bw/16)[{r(t)—r(0))1f=(3m/16)fvt~ fyt. Since the fluc-
tuations will be maximized at wt=1, we find that Topr~ -
The “effective temperature” is thus proportional to the shear
strain amplitude [11].

Recent computer simulations [22,23] and experimental
measurement using tracers [24] also support the existence of
a well-defined effective temperature for sheared jamming
materials. Hence, the dynamics of a jamming system whose
effective temperature is lowered by reducing deformation
(e.g., the strain) toward jamming will be quantitatively simi-
lar to those of a glass-forming material whose temperature is
lowered towards the glass transition. The shear strain in filled
rubbers acts physically like the temperature in glass-forming
liquids. As for the filled rubbers, conventional dynamic
stresses and strains (e.g., from 0.1% to 10%) typically place
the filled rubbers right in the middle of the jamming transi-
tion. Thus, the larger the strain amplitude applied to the rub-
ber, the larger the mechanical energy placed on the filler, the
higher the mobility of filler particles, the higher the degree of
dejamming, and the lower the storage modulus of the rubber.
This explains why the viscoelastic properties of filled rubber
are strongly nonlinear. In addition, the application of the con-
cept of effective temperature allows the extension of ideas
from molecular statistical mechanics to filled rubbers.

C. Isoenergetic character

The dynamic moduli (G’ and G”) for filled rubbers as
functions of strain amplitude and frequency are presented in
Fig. 5. At low strains, again a strain-independent state is
usually observed. As the strain is increased, the storage
modulus G’ falls with increasing strain amplitude, while the
loss modulus G” passes through a maximum (G ). Re-
markably, despite the marked difference in frequencies, all
experimental data can collapse onto a single master curve;
this is accomplished by normalizing G’ by G, and G” by Gy,
and by plotting the resultant data against the mechanical en-
ergy input oy (in terms of units of Joule per volume)
(see Fig. 6), where o is the stress amplitude and o=G' .

The extent of the vertical normalization is certainly influ-
enced by the test frequency, but the phenomenon of all data
collapsing onto a single master curve (i.e., the dejamming
transition) is not. The reason is that the filler structure has a
relaxation time that would much exceed the time scale of a
conventional frequency sweep. A dynamic frequency sweep
in conventional tests detects only the polymer dynamics,
which appears to influence mainly the magnitudes of the G’
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FIG. 5. Dynamic moduli (G’ and G”) for the filled rubber (¢
=16.8%) at 30 °C as functions of strain amplitude and frequency.
The rate of strain sweep near transition dy/dt=~0.80 min~".

and G” at y=0. To understand that, let us separate two filler
particles in a rubber matrix to a distance of x=500 A. This
probably can be done in seconds by stretching a piece of
rubber to about a few percent strain. However, if the particles
are allowed to thermally diffuse over such a distance, this
likely will require about a day for them to contact each other.
A rough estimation of the thermal diffusion time for particles
to travel such a distance can be made from Stokes equation
x*/t=kT/(67na). For 5=10° Pa and =30 nm (typical val-
ues for carbon black in a diene-rubber matrix) the estimation
gives t~10° s. Hence, the jamming transition in filled rubber
can be easily detected by a strain sweep, but not by a fre-
quency sweep. Such a behavior of filled rubber is always
observed as long as the polymer matrix is dynamically linear
with the strain and as long as the test temperature (7) is
fairly well above the T, of the polymer. For cases when T is
near T, the complication can be involved and will not be
discussed here.

The effects of the filler loading on the dejamming transi-
tion in filled rubbers are presented in Fig. 7. The symbol ¢

1.20 1
1.00 + g’@’@wwa‘ﬁ.m
] &%
0.80 +
] 1.40 5 )
.o 1 123 I+ @ 0.0010Hz
E\D 0.60 T o110} & W& % 00.0022Hz
) ] 1003 W % £0.0046Hz
1= g-gg - 4 % %0.0100Hz
1 803 x
0401 O —0 1 % X0.0215Hz
] 060 1 ©0.0464Hz
] 0.50 & +0.1000Hz
0.20 T+ 0.40 t i t i A0.2154Hz
] TED2 1.E+400 1E+02 1E+04 1E+06 —0.4641Hz
] ay (joule/cm?) #1.0000Hz
0.00 — ot Tt —rrrr
1.0E-02 1.0E+00 1.0E+02 1.0E+04 1.0E+06

oy (joule/cm’®)

FIG. 6. Normalized dynamic moduli (G’ and G”) for the filled
rubber (¢=16.8%) at 30 °C plotted versus oy. The G’ and G” data
are vertically rescaled by the zero-strain limited value of G’ and G”.
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FIG. 7. Strain dependence of storage modulus for filled rubbers
with indicated filler volume fractions. The test conditions: 0.5 Hz
and 30°C. The rate of strain sweep near the transition
dyldt=1.5 min".

represents the volume fraction of filler in the rubber matrix.
Again, a linear behavior is observed below a strain of 1%.
Upon further increasing the strain amplitude, the storage
modulus G’ falls off beyond a sort of critical-point strain
(y.). At high strains, the drop in modulus is enormous and all
compounds appear to approach the unfilled pure polymer
gum whose modulus is low and linear through the strain-
amplitude scale. Figure 8 shows that the magnitude of the
critical strain v, at the transition decreases with increasing
filler loading, while the magnitude of the critical stress o,
increases with increasing filler loading. Remarkably, when
the normalized storage modulus G'/G,, and loss modulus
G"/G) . are plotted against the variation of the mechanical
energy o, all experimental data appear to collapse approxi-
mately together (see Fig. 9). Of most importance is that the
critical mechanical energy, defined as o.v,, at the transition
is constant.

This isoenergetic behavior of the transition is not limited
to the filled rubbers studied here. We have previously ana-
lyzed [10] other jammed systems, such as silica colloidal
particles in oil, aqueous suspensions of boehmite alumina
powders [25], and latex dispersions of polystyrene particles
[26]. We found that all of them displayed the same isoener-
getic behavior. This character of the jamming transition sug-
gests that although jamming is kinetic, it may also be ther-
modynamic in nature. The physical significance of this
isoenergetic behavior can be understood with the aid of the
concept of the effective temperature 7. Based on the Ein-
stein fluctuation-dissipation relation, we have found T,
=(3m/16)fvt~ fyt, where f is the friction force. From the
force continuation principle, the force f must be proportional
to the experimentally measurable shear stress o. Thus, it
would be more suitable to write T,;~ oy. Hence, a jammed
material switches from elastic solid behavior to viscous fluid
at a constant effective temperature 7. Throughout the lit-
erature thermoreversible gels are known to show the same
behavior. For example, a solution of gelatin in water is a
simple fluid at high temperatures. If we cool the solution, we

031406-5



X. WANG AND C. G. ROBERTSON

9.E+05 7
1@

8.E+05 F
7.E+05 7
6.E+05 ] 4

- ] -=-16.8%

B 5E+05 3

= ] ——14.3%

iy 4.E+05 7

o ] - 12.2%
3.E+05 E -£10.0%
2.E+05 —0-6.4%
1.E+05 § -0-0.0%
0.E+00 +—— Tt —r— T

100 1000 10000 100000 1000000 10000000
Stress ¢ (Pa)

9.E+05 7
8.E+05
7.E+05 3
6.E+05 ¢

- ] - 16.8%

© 5E+05 3

e 3 —a14.3%

5. 4E+05 3

O -8-12.2%
SE+05 ¥ -5-10.0%
2E+05 1 - 6.4%
1.E+05 T -0-0.0%
0.E+00 F——rrrrm———rrrr——rrrrrr——rrrrr——rrrre

0.01 0.1 1 10 100 1000

Strain y (%)

FIG. 8. (a) Stress dependence of loss modulus for filled rubbers
with indicated filler volume fractions. (b) Strain dependence of loss
modulus for filled rubbers with indicated filler volume fractions.
Arrows mark the maximum locations. The test conditions: 0.5 Hz
and 30 °C. The symbol legend is the same as that given in Fig. 7.

get a gel. If we raise the temperature again, we recover the
solution. As is known, the crosslinks in many physical gels
are produced by some physical associations between mol-
ecules, such as hydrogen bonding, ionic interactions, micro-
crystals, etc. Mostly the strength of those crosslinks depends
on the nature of particular associations that break up at cer-
tain constant temperature 7, but is not sensitive to the con-
centrations. This behavior has been described by de Gennes
[27], who also stressed that there is a similarity between the
thermoreversible gelation and the glass transition.

Although the oy, value in the filled rubber compounds is
independent of frequency w and filler concentration ¢, it is
sensitive to real temperature 7. The effects of the tempera-
ture on the jamming transition in filled rubbers are illustrated
in Fig. 10. As temperature decreases, the critical mechanical
energy input required for this transition increases. The reason
is that as temperature decreases the volume of the polymer is
usually reduced, the mean distance between filler particles
decreases, and interactions between particles intensify. In ad-
dition, polymer dynamics also has some contributions to the
phenomenon. As temperature decreases, the polymer be-
comes less compliant and thus o, increases.
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FIG. 9. Normalized dynamic moduli (G’ and G”) for filled rub-
bers with indicated filler volume fractions plotted versus ovy. The
test conditions: 0.5 Hz and 30 °C. The G’ data are vertically scaled
by the zero-strain limited value of G'. The G” data are vertically
scaled by G . the peak value of G”. The symbol legend is the
same as that given in Figs. 7 and 8.

D. Percolating and jamming

What will happen to the conductivity (I') of rubber com-
pounds loaded with various levels of carbon black if the
system passes through the jamming transition? There are
three basic properties of carbon black that are considered to
affect the level of conductivity in rubber compounds. These
are the primary particle size (or surface area), the primary
aggregates, and the void space between those particles. Other
factors in rubber compounds might play a role in determin-
ing conductivity but not to the extent of the above noted
properties. Given that the primary particle size is constant
and the degree of the primary aggregates is approximately
the same after compounding, the void spaces between par-
ticles and aggregates therefore vary with varying filler load-
ing and thereby control electrical flow through rubbers. Fig-
ure 11 presents the conductivity (I') of the filled rubbers as a
function of carbon black loading. As the loading passes
through a threshold ¢, there is an abrupt increase in elec-
trical flow with increasing carbon black loading. The transi-
tion is analogous to the general critical phenomena in terms
of percolating.
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FIG. 10. Dynamic storage modulus (G”) for the filled rubber
(¢p=16.8%) as functions of strain amplitude and temperature. The
G” data are vertically scaled by G, . the peak value of G'. The
inset shows a plot of critical 0,7y, versus temperature. The rate of

strain sweep near the transition dy/dt=~0.80 min~!.

Figure 12 shows the critical mechanical energy o,7, as a
function of carbon black concentration. Prior to a jamming
threshold ¢,,,, the magnitude of o7, increases linearly with
increasing filler concentration. However, when the filler
loading exceeds the threshold ¢,,,, the behavior of .y, vs
the filler concentration ¢ changes drastically and o7, be-
comes independent of ¢ as illustrated earlier. Surprisingly,
we find that the threshold observed in dynamical mechanical
measurements ¢,,, is the same point as that observed in con-
ductivity measurements ¢,.r. Hence, this study reveals that
the jamming and percolating of fillers in rubber composite
share the same physical origin.

E. Phase diagram

We now understand that different routes, through strain,
volume fraction, and temperature changes, can effectively

1000

100

10

Percolating State
(or Jamming State)

0.00 0.05 0.10 0.15 0.20

FIG. 11. Conductivity (I") of filled rubbers as a function of filler
volume fractions. ¢, marks the percolation threshold. Test condi-
tions: 23 °C and 32% relative humidity.
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FIG. 12. Critical mechanical energy (o, 7,) as a function of filler
volume fractions. ¢,,, marks the jamming threshold. The test con-
ditions: 0.5 Hz and 30°C. The rate of strain sweep dy/dt

~1.5 min~".

lead filled rubbers to the same jammed state. A large unified
physical picture in describing the dynamics in the frustrated
systems would be a jamming phase diagram that is able to
address the glass and jamming transitions. Based on our ex-
perimental observations, we propose a unified diagram as
schematically shown in Fig. 13. The phase diagram for iso-
viscosity lies in the vertical (1/¢)-T plane. The line that
separates the jammed solids and unjammed liquids generally
represents the glass transition. The classical empirical equa-
tion proposed by Doolittle [28] describes approximately the
location of this transition. The transition line marks a critical
viscosity of the system that in practice is impossible to track
in the time scales accessible to experiment. The phase dia-
gram for isoenegetic state lies in the horizontal (1/¢)-oy
plane. The isoenergetic behavior comes from our experimen-
tal observation on various systems [10]. The effects of the
temperature on the jamming transition are illustrated in the
T-ovy plane. The magnitude of the energy is a function of the
elasticity of the jammed fractal structure and the interaction
strength between filler particles. Our experimental data show
that 0,7y, increases as temperature decreases. The transition

Thermal Energy
(kT)

case for T=0
(i.e., granular materials)

Ja Imed

Mechanical Energy

Vo L. (o)

_— ==

o

FIG. 13.
diagram.

A schematic drawing of the jamming phase
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line marks a critical mechanical energy needed to dejam the
system. The significance of this jamming phase diagram is
that it has incorporated all variables that are derivable from
Hamiltonians and may facilitate crucial comparisons be-
tween theories and experiments.

Some years ago Liu and Nagel [18-20,29] also proposed
a phase diagram for jamming. In their phase diagram, how-
ever, very unusual axes were selected; i.e., the temperature 7,
density ¢, and the shear stress o. The quantities 7 and ¢ are
traditional axes for phase diagrams, but o is not. The physi-
cal origin of selecting o in the phase diagram is not clear,
though recent mode-coupling theories have attempted to in-
clude the shear stress [30]. In this study, we have found
experimentally that using oy instead of o as the critical pa-
rameter can significantly simplify the phase diagram. It is
also noteworthy that this mechanical energy oy, similar to
the thermal energy k7, is theoretically derivable from Hamil-
tonians, which makes it is a natural choice as an axis in
constructing phase diagrams.

F. Some thoughts on modeling

Interpretation of the nonlinearity in the modulus of filled
rubbers as a consequence of the filler deagglomeration and
filler network breakdown with increasing strain is not new.
However, previous investigations [1-6] did not reach a large
unified physical picture in describing the dynamics in frus-
trated systems like filled rubbers. Particularly, they often de-
scribed the strain-induced nonlinearity using a two-stage
A < B kinetic model [1-4], where A stands for the filler net-
work, and B stands for the broken pieces. This model, be-
cause of oversimplicity, is unable to provide any insights into
the observed asymmetric kinetics, crossover effects, and
glasslike transitions of filled rubbers. At present, nonlinear
properties of rubbers such as stress-strain, creep compliance,
and dynamic moduli are independently characterized and
measured in rubber industries.

There may be other factors in rubber compounds, such as
polymer-filler debonding from the filler surface [7,8] and
strain softening of the polymer shell surrounding the filler
particles [9], that may play a role in determining the nonlin-
earity. However, these effects are not nearly as significant as
the above noted properties and they are only observed in
particular cases. Our investigation suggests that the strain-
induced nonlinearity in the modulus of filled rubbers is due
to a dejamming process. Filled rubbers show glasslike kinet-
ics because the glass transition and jamming process share a
common ground in physics. This knowledge can be used to
develop theoretical models for describing the nonlinearity of
filler-rubber composites.

Let us follow the development of the Kovacs multiparam-
eter model [13,14] of the nonequilibrium glassy state and
replace the temperature variable with the strain due to its
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direct connection to the effective temperature. The departure
of stress (o) from steady state (o) can be defined as 8,=c
—0,. At any strain amplitude, the relevant expression for
O4(t,7y) is then given by a convolution integral 5,=—(G,
-G,)[(R(t—1")(dy/dr)dt'; where R(t) is a normalized retar-
dation function. If we assume that the retardation function is
a stretched exponential, i.e., R(t)~exp(—t/7)? with 0<p
=</, we thus obtain a model for describing the modulus.
Further introduction of a &, dependence of 7, such as 7
~exp{A/[WI-Blvy)]} and y;=y+38,/(Gy—G,) similar to
that used in the Tool-Narayanaswamy-Moynihan models
[12] for glasses, will provide a phenomenological model for
describing the nonlinearity in modulus. We found that this
model qualitatively describes the asymmetric kinetics, cross-
over effects, and glasslike transitions. There are many details
needing to be thought out. Nevertheless, we believe that this
proposed approach will lead to a better model of the nonlin-
earity, because it captures the fundamentals of the process.

IV. CONCLUSIONS

In this article we present experimental evidence suggest-
ing the existence of an analogy between dynamic strain-
induced nonlinearity in the modulus of filled rubbers, the
physics of the glass transition of glass-forming materials, and
the jamming transition of vibrated granular materials. This
analogy stems from the fact that shear strain in dynamic
mechanical measurements introduces fluctuations in filler
networks by forcing the system to explore different configu-
rations. Such fluctuations can be described by an effective
temperature 7, that has many attributes of a true tempera-
ture. We show theoretically that the T, value is proportional
to strain amplitude. Thus, filled rubbers with respect to strain
must display many unusual phenomena, including asymmet-
ric kinetics, crossover effects, and glasslike transitions. The
nonlinearity in modulus of filled rubbers simply reflects a
dejamming transition of the fillers in rubber matrices. The
agglomeration of filler in an elastomeric matrix shares a
common ground of physics with the jamming process and
glass formation. In addition, we demonstrate experimentally
that the jamming transition in filled rubbers also behaves as
an isoenergetic thermodynamic transition. This evidence sug-
gests that although jamming is kinetic, it may also be ther-
modynamic in nature. The coexistence of kinetic and ther-
modynamic descriptors of the jamming transition is
analogous to observations about thermoreversible gels.
Based on those experimental results, we propose a unified
phase diagram for jamming transitions. The significance of
this jamming phase diagram is that it has incorporated vari-
ables that are all derivable from Hamiltonians and may
facilitate crucial comparisons between theories and
experiments.
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